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Abstract 
 

The finite elliptic similar integrals of 

second kind are well known as 
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Those integrals cannot be solved by any 

classical method. In this paper, we prove 

that the above equation can be replaced by  

 
1/.(1 ( / ) )s sL a b a= +  

 

As it is well known, on the positive 

Cartesian, all astroids are expressed by: 

( / ) ( / ) 1r rx a y b+ =  

 

where a, b, and  r  are any positive constant 

real numbers. 

 

Using this equivalency and when (r=2) 

the perimeter of an ellipse is estimated at  

full-range with a maximum error %=-

0,000002432 

 

Full-range is (1<b/a<infinity).Ram. 
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Application 

 

The aim of this work is to find the most 

accurate estimation for the total arc length 

of the astroids on the positive Cartesian, 

mainly for the ellipses.  

 

 

To estimate the perimeter of an ellipse, 

there are thousand of formulas: 

Kepler, Euler, Muir, Ramanujan, …...many 

mathematicians have tried to give an 

accurate approximation for the perimeter 

of an ellipse, but only for the ellipse! 

Here, we will prove a NEW EXACT 

formula applicable to all the astroids, 

ellipse included. 

We will propose a very accurate, 

approximate solution of this formula. 

This proposition was declared on San 

Francisco IAENG conference in 2008 

without giving the proof. 

Here, the proof will be introduced the first 

time. 

The math world has never seen such an 

accurate estimation. 

World recorded error is %=0.00145.. 

New record error is %=-0.000002432… 

 

 

Introduction to the ELLIPTIC 

SIMILAR FINITE INTEGRALS 

( / ) ( / ) 1r rx a y b+ =           (1i) 

astroid family is considered.      

We search for the total arc length (L) on 

the positive Cartesian 

 

.x k a=                 is written, then from  (1i) 
(1/ ).(1 )r ry b k= −   is found 

 

We differentiate these expressions  
2 2 2.dx a dk=  
2 2 ((2 2. )/ ) (2. 2) 2.(1 ) .r r r rdy b k k dk− −

= −  then 
2 2 2dL dx dy= +          (2i) 

 is considered  
2 2 2 ((2 2. )/ ) (2. 2) 2( .(1 ) ).r r r rdL a b k k dk− −

= + −  

is written and 
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is found        (3i) 



Example: r=1     
(we substitute r=1 in (3i)) 
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or, with linear writing 

 

L=(a^2+b^2)^(1/2)  is found 

 

Example: r=2/3      

(we substitute r=2/3) in (3i)) 

No solution. But when a=b  

 

L=a*int[0 to 1] (1+((1-

k^(2/3)/k^(2/3)))^(1/2)*dk 

 

L=a*int[0 to 1] k^(-1/3)*dk 

L=a*3/2   is found 

 

Example: r=2      

(we substitute r=2 in (3i)) 

No solution. (Only special series terms 

solution) and when a=b, 

 

L=a*int[0 to 1]((1+k^2/(1-k^2))^(1/2)*dk 

 

L=a*(Pi/2) is found by definition. 

 

ELLIPTIC SIMILAR FINITE 

INTEGRALS ARE EXPRESSED BY 
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When a=1, the unit total arc length of the 

astroid, on the positive Cartesian, is 

evaluated. 

We will prove:   say (b/a=TAN) 
(1/ )1 (1 )s sL TAN= +    

or, with linear writing 

 

L1=(1+TAN^s)^(1/s)      (4i) 

 

Only, for (r=2, the ellipse) an eccentricity 

is defined.[e] 

For b<a    e=(1-TAN^2)^(1/2) 

For b>a    e=(1-1/TAN^2)^(1/2)  

For other astroids (e) has not a 

signification. 

So, we will not use [e], but [TAN]. Valid 

for (0<r<infinite) 

 

PROOF 
 

To reach to the formula  

L1^s=1+TAN^s 

 

 

 

The astroid family  

 

(x/a)^r+(y/b)^r=1           (1) 

where r=Constant, is enveloped  by 

(x/A)^t+(y/B)^t=1 where t=t(x)         (2)

      

We search for a relation f(a,b,r,A,B,t)=0 

 

At the touching point (P) of the graphs we 

write  -the slopes are equal 

-the coordinates are equal 

 

For the coordinates we write 

y=b/a*(a^r-x^r)^(1/r)=B/A*(A^t-x^t)^(1/t)      

           (3) 

For the slope of the enveloped astroid we 

write 

dy/dx=-(b/a)^r*(x/y)^(r-1)  

dy/dx=-(b/a)*((x^r)/(a^r-x^r))^((r-1)/r)

           (4) 

For the slope of the envelope itself   

-say (x/A)^t=U  ;  (y/B)^t=V  then, 

   

U+V=1          (5) 

dU+dV=0          (6) 

 



we have 

t*ln(x/A)=lnU 

t*ln(y/B)=lnV          (7) 

     

When we differentiate (7), we write 

 

dt*ln(x/A)+t*(dx/x)=dU/U 

dt*ln(y/B)+t*(dy/y)=dV/V         (8) 

  

 and there from, 

 

dU=U*(dt*ln(x/A)+t*(dx/x)) 

dV=V*(dt*ln(y/B)+t*(dy/y))        (9) 

 

Considering (7), the expression (6) is 

written as 

 

U*(dt*1/t*lnU+t*dx/x)+V*(dt*1/t*lnV+t*

dy/y)=0        (10)

  

and there from 

 

V*t*dy/y=-U*(dt/t*lnU+t*dx/x)-

V*(dt/t*lnV)        (11) 

 

dy/dx=-

y/(V*t)*U*((dt/dx*1/t*lnU+t/x))+V*dt/dx

*1/t*lnV)        (12) 

 

taking (U and t/x) out of the parenthesis 

      

dy/dx=-

U/V*y/x*(1+dt/dx*x/t^2*1/U*(U*lnU+V*

lnV))  is written      (13) 

 

say 
 

N=(1+dt/dx*x/t^2*1/U*(U*lnU+V*lnV))

         (14)

   

dy/dx=-U/V*y/x*N      is written     (15) 

 

For the equality of the slopes, we write 

(15)=(4). 

 

Considering also (3), we write 

 

(b/a)*((x^r)/(a^r-x^r))^((r-

1)/r)=U/V*1/x*(B/A)*(A^t-x^t)^(1/t)*N

         (16) 

 

Replacing (4) and (5) in (16) we write 

 

(b/a)^r*(x/y)^(r-1)=(B/A)^t*(x/y)^(t-1)*N

         (17) 

 

say   (B/A)=E     (18)

   

Use (3), we write (17) as follows 

   

(b/a)^r=E^t*(x/(E*(A^t-x^t)^(1/t)))^(t-

r)*N            (19) 

and there from     

 

b^r=E^r*a^r*(x^t/(A^t-x^t))^((t-r)/t)*N 

is written        (20) 

 

using (3) and (20), the expression (1) is 

written as follows 

 

(x/a)^r+((A^t-x^t)^(r/t)*(A^t-x^t)^((t-

r)/t))/a^r*x^(t-r)*N=1       (21) 

 

x^t*N+A^t-x^t=a^r*x^(t-r)*N     (22) 

 

A^t=a^r*x^(t-r)*N-x^t*(N-1)     (23)

       

then ,from (23) we get  

  

x=((A^t-x^t*(1-N))/a^r*N)^(1/(t-r))     (24) 

 

a^r*x^(t-r)*N=A^t-x^t*(1-N)     (25) 

 

using (25) in (20) 

 

b^r=E^r*(A^t-x^t*(1-N))/(A^t-x^t)^(t-r)/t) 

A^t=(b/E)^r*(A^t-x^t)^(t-r)/t)+x^t*(1-N) 

is written        (26) 

 

(26)=(23)     then, 

 

(a/b*E)^r*x^(t-r)*N=(A^t-x^t)^((t-r)/t) 

is written        (27) 

 

A^t-x^t=(a/b*E)^(r*t/(t-r))*x^t*N^(t/(t-r)) 

is written        (28) 

 

A^t=x^t*(1+((a/b)*E)^((r*t)/(t-r))*N^(t/(t-

r)))  is written      (29) 

 



 

From (29)    we get (x) 

 

x=A/(1+((a/b)*E)^((r*t)/(t-r))*N^(t/(t-

r)))^(1/t)        (30) 

 

(30)=(24)     then, 

 

((A^t-x^t*(1-N))/(a^r*N))^(1/(t-

r))=A/(1+((a/b)*E)^((r*t)/(t-r))*N^(t/(t-

r)))^(1/t)        (31) 

 

(A^t-x^t*(1-N))/a^r*N=(A^(t-

r)*b^r)/(b^(r*t/(t-r))+(a*E)^(r*t)/(t-

r))*N^(t/(t-r)))^((t-r)/t)      (32) 

 

We take ((t-r)/r*t) power of both sides, 

We proceed, then we take the power 

(r*t/(r-t)) of both sides 

 

say  r*t/(r-t)=s                    (33) 

we write 

 

(A^t-x^t*(1-

N))^(s/r)*A^t=a^s*N^(s/r)+(b/E)^s     (34) 

 

For the astroids of the same power, 

when b/a=TAN=Constant 
dt/dx=dt/dTAN*dTAN/dx=0  and  N=1  

then,         (35)

    

A^(t*s/r)*A^t=A^s=a^s+(b/E)^s  
is written        (36) 

 

that is: 

 

(a/A)^s+(b/B)^s=1       (37) 

 

In a symmetric case, when (A=B=K) ,  

we write 

 

K^s=a^s+b^s        (38) 

 

Say (K/a=L1) ; (b/a=TAN) 

  

L1^s=1+TAN^s is written  (38)L 

 

L1=(1+TAN^s)^(1/s)    is proven 

 

 

 

Cracking 

 

In this section we study the total arc length. 

The reasoning (38)L means, 

 

((L1)1)^s1=1+TAN1^s1 

((L1)2)^s2=1+TAN2^s2 

….. 

((L1)n)^sn=1+TANn^sn  

 

This expression is implicit! 

 

To crack this implicit expression, first we 

get the real data of (s).We know  (L1). 

TAN=b/a is given.       (s) is found. 

 

The evaluation of (L1) is done by summing 

a couple millions segments of dL1.We 

suppose; we have no idea about integrals.   

They are unsolvable practically! 

 

Application : (case r=2  the ellipse) 

 

An application was posted inWCECS2008. 

This is an update, an expended version. 

 

(x/a)^r+(y/b)^r=1         (1) 

is considered 

 

dL1=(dx^2+dy^2)^(1/2) are summed and 

 

L1=Sum[dL1] is obtained  

 

(1+TAN^s-L1^s=0) gives an [sReal] graph                  

as shown in Figure.1(case r=2; the ellipse) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 sExact for ellipse 
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We start the cracking: 

This graph looks like an astroid.We write a                        

math Model expression for this similarity: 

sMod=d1+b1*(1-((x-c1)/a1)^p)^(1/p)+(F+m1*x^v1+n1*x^w1) 

 

We overlap sExact  & sMod graphs using  

the following parameters.Fig.2 shows the 

overlapping. 

 

parameters values 

a1 1000 

(sm-sM)=b1 -0,193967895182134 

c1 0 

           d1 0,000000000000000 

       p 2,980000000000000 

sM=F 1,728896430843500 

m1 0,000000000000000 

v1 1 

n1 0 

w1 1,00 

 

 

 

 

 

 

 

 

 

Fig.2 Overlapping of sExact&sMod 

 

The overlapping is not good because we 

used  [p=Ct].It should be variable. Then an 

exact fitting can be realized. So, we write 

 

Error of the overlapping=0. For this we say 

(sMod-sExact)/sMod=0 

 

This cracks [p=Constant] and gives a new 

graph for [p].Fig.3 shows [pExact] graph 

 

 

 

 

 

 

 

 

Fig.3 pExact giving error %=0 

But this is nothing, than being a graph. We 

must write a math model for this graph. 

 

We continue cracking. We say it looks like 

an astroid with the following parameters  

pMod=d2+b2*(1-((x-c2)/a2)^q)^(1/q)+(G+m2*x^v2+n2*x^w2) 

 

parameters values 

a2 500 

b2 0,3 

c2 500 

       d2 0,000 

              q 6 

G 1,965 

m2 0,000996000 

v2 1 

n2 0 

w2 1 

Fig.4 shows the overlapping of 

pExact&pMod graphs 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 pMod do not fits pExact accurately 

 

We say the parameters values estimated for 

a good overlapping was not correct. So, 

again, we write 

 

Error of the overlapping=0.For this we say 

(pMod-pExact)/pMod=0 

 

We attack the parameters of pMod. 

We chose (b2; m2; G) consecutively 

 

b2Mod ;m2Mod; GMod and the values of 

the parameters, and the corresponding new 

pMod , new sMod and also their 

overlapping graphs are as follows: 
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0

0,5
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What we are doing is to correct pMod. 

 

b2Mod=d3+b3*(1-((x-c3)/a3)^r)^(1/r)+(H+m3*x^v3+n3*x^w3) 

pMod=d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(G+m2*x^v2+n2*x^w2) 

sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x^v1+n1*x^w1) 

 

parameters values 

a3500 

b30,340000 

c3500 

d30,000000 

              r23 

H0,638500 

            m30,000040 

v31,000000 

n3-0,000001 

w31,600000 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 The overlapping is not good 

 

So, we continue the correction, now with 

m2Mod 

m2Mod=d4+b4*(1-((x-c4)/a4)^t)^(1/t)+(J+m4*x^v4+n4*x^w4) 

pMod=d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(G+m2Mod*x^v2+n2*x^w2) 

sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x^v1+n1*x^w1) 

 

 

parameters values 

a4 500 

b4 -0,000906 

c4 500 

d4 0 

                  t 12 

J 0,000092 

m4 0,0000000000 

v4 1 

n4 0 

w4 1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 The overlapping is not good 

 

So, we continue the correction, now with 

GMod 

GMod=d5+b5*(1-((x-c5)/a5)^u)^(1/u)+(K+m5*x^v5+n5*x^w5)  

pMod=d2+b2Mod*(1-((x-c2)/a2)^q)^(1/q)+(GMod+m2Mod*x^v2+n2*x^w2) 

sMod=d1+b1*(1-((x-c1)/a1)^pMod)^(1/pMod)+(F+m1*x^v1+n1*x^w1) 

 

parameters values 

a5 1000 

b5 -0,797500000 

c5 0 

d5 0 

u 8,37 

K 1,171710000000000 

m5 0,000001000000000 

v5 0 

n5 -0,0000011 

w5 1,4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 The overlapping looks good. 

 

We say, these 5 stages evaluations are 

sufficient for an accurate continuous 

estimation of the total arc length on the 

positive Cartesian. We stop there. 
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We may continue ! 

 

We will control the error % for the whole 

range (1<b/a=TAN<infinity). We write: 

 

Error %=(Lestimated-LExact)/Lestimated 

 

Fig.8 shows the final error % graph. 

Overall max.error %=-0,000002432900942 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 final error % graph   (1<TAN<infini) 

 

This accuracy is to be compared with the 

world known error %=0,00145…. 

 

Fig.9 is a comparison graph for the 

estimations of Master Ramanujan (dead 

1920) with the estimation of Necat for 

(1<TAN<10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9  comparison Ram&Nec for  dL1 

 

Ramanujan is Master when TAN<2,5 

 

 

A numerical example 
1

2 ((2. 2)/ ) (1/2)

0

. (1 ( / ) .( / (1 )) ) .
r r r r

L a b a k k dk
−

= + −∫  

solve the above integral for (a=1 ;b=5;r=2) 

No solution, except mathematical tools. 

We can solve  L=a*(1+TAN^s)^(1/s) 

with an accurate estimation,  not only for 

the ellipse but for any (r),any astroid. 

 

Use the following designations: Find (x) 

 

Angle step =0,045   

x=(Angle-45)/0.045 

angle o=45+angle step*x 

ATAN=angle o*Pi/180 

angle o=ATAN*180/Pi 

 

TAN=b/a=  5 

ATAN=  1,373400767 

Angle=  78,69006753 o 

x=   748,66817 

 

Use value (x) in Formulas and find 

 

b2Mod= 0,288740099 

m2Mod= 0,000997983 

GMod= 1,948787387 

 

pMod= 2,99518385 

sMod=  1,567203335 

 

Use sMod in L=(1+TAN^sMod)^(1/sMod) 

Find  L1estimated= 5,252513329792510 

L1Exact=5,252511134922270 (with tools) 

Control error % 

 

Error %=(Lest-LExa)/Lest=0,000000417.. 

 

Nothing better than this result! 

This is a world record. 

 

Conclusion 

 

This cracking method is not only for the 

ellipse. 

It is valid for all r (0<r<infinity) 

It is valid for all TAN (1<TAN<infinity) 

 

NB: Similar reasoning may be considered 

for AREA evaluation, with adequate math. 
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K^s=a^s+b^s      will be considered 

Say             K=Area (as an object) 

K/a     will be the real area 

K/a^3           will be the constant unit area 

 

Example:(evaluation with 50 000 000 

segments) for 

r=2 (area of an ellipse is to be considered) 

a=37 

b=0,581242447.. 

That is   b/a=TAN=0,0157.. 

s=0,15125741…         extracted from (K^s) 

K=624,9577492…        =(a^s+b^s)^(1/s) 

K/a=16,8907497627      =(1+TAN^s)^(1/s) 

K/a^3=0,01233802…  =constant unit area 

 

 

 

 

 

 

 

 

sGraph for r=2 (0<TAN<infinity).Not 

important, just typical. 

 

The important is that  

K/a^3=0,01233802…  =is  a constant 

for (r=2) and (TAN=0,0157..) Then, 

the real area is expressed by 

K/a=(K/a^3)*a^2 

Example: 

 

r=2 

a=123 

TAN=0,0157..=b/a 

That is          b=1,9311.. 

Real area=0,01233802..*123^2 

Real area=186,6619112… 

 

r=2 

a=238 

TAN=0,0157..=b/a 

Real area=0,01233802..*238^2 

Real area=698,8749097.. 

 

These mean that the constant area value is 

a function of (TAN) and (r). Here is its 

graph. This graph is important. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application: (evaluation with 50 000 seg.) 

 

r=2 

a=2748 

b=will vary in the following examples 

 

 

b=43,1436.. 

TAN=0,0157..Var.Constant=0,01233802 

Area=93171,79266.. 

 

b=259,686… 

TAN=0,0945..Var.Constant=0,074242928

Area=560645,7662… 

 

b=5393,2248… 

TAN=1,9626..Var.Constant=1,541450261

Area=11640267,81…. 

 

Final remark : (for r=2) 

Var.Constant/TAN=Coeff.constant 

Coeff.Constant=0,785398163397448=Pi/4 
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