Calculating the area and centroid of a polygon in 2 d

Let $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{N-1} \subset \mathbb{R}^{2}$ be a closed polygon in the plane, and let the vertices be ordered counter clockwise. Then it is well-known that the polygon encloses the area

$$
A=\frac{1}{2} \sum_{i=0}^{N-1}\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)
$$

and its centroid is given by

$$
\frac{1}{6 A}\left(\sum_{i=0}^{N-1}\left(x_{i}+x_{i+1}\right)\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right), \sum_{i=0}^{N-1}\left(y_{i}+y_{i+1}\right)\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)\right)^{T} \in \mathbb{R}^{2}
$$

see e.g. paulbourke.net/geometry/polygonmesh.

Calculating the volume and centroid of a polyhedron in 3d

Similar formulas exist for the enclosed volume and centroid of a polyhedron P in \mathbb{R}^{3}, but these appear to be less well-known. In the following we assume without loss of generality that the boundary of the polyhedron is given by a union of triangles. (More general facets can easily be subdivided into triangles.) We stress that P need not be convex.
Let $A_{i}, i=0, \ldots, N-1$, be the N triangular faces of the polyhedron, with vertices $\left(a_{i}, b_{i}, c_{i}\right)$, which are assumed to be ordered counter clockwise on A_{i}. This means that we can define the outer unit normal n to P on each A_{i} as $n_{i}=\hat{n}_{i} /\left|\hat{n}_{i}\right|$, where $\hat{n}_{i}=\left(b_{i}-a_{i}\right) \otimes\left(c_{i}-a_{i}\right)$. Then the volume of P is given by

$$
V=\int_{P} 1=\frac{1}{3} \int_{\partial P} x \cdot n=\frac{1}{3} \sum_{i=0}^{N-1} \int_{A_{i}} a_{i} \cdot n_{i}=\frac{1}{6} \sum_{i=0}^{N-1} a_{i} \cdot \hat{n}_{i},
$$

where we have used the divergence theorem, the fact that $x \cdot n_{i}$ is constant on each A_{i}, and the fact that the area of A_{i} is given by $\frac{1}{2}\left|\hat{n}_{i}\right|$.
Let $c \in \mathbb{R}^{3}$ denote the centroid of P, i.e. $c=\frac{1}{V} \int_{P} x$. Applying the divergence theorem once again, and on denoting the standard basis in \mathbb{R}^{3} by $\left\{e_{1}, e_{2}, e_{3}\right\}$, we obtain for the three coordinates of the centroid that

$$
c \cdot e_{d}=\frac{1}{V} \int_{\partial P} \frac{1}{2}\left(x \cdot e_{d}\right)^{2}\left(n \cdot e_{d}\right)=\frac{1}{2 V} \sum_{i=0}^{N-1} \int_{A_{i}}\left(x \cdot e_{d}\right)^{2}\left(n_{i} \cdot e_{d}\right), \quad d=1,2,3
$$

It remains to compute that

$$
\begin{aligned}
\int_{A_{i}}\left(x \cdot e_{d}\right)^{2}\left(n_{i} \cdot e_{d}\right) & =\frac{1}{6} \hat{n}_{i} \cdot e_{d}\left(\left[\frac{1}{2}\left(a_{i}+b_{i}\right) \cdot e_{d}\right]^{2}+\left[\frac{1}{2}\left(b_{i}+c_{i}\right) \cdot e_{d}\right]^{2}+\left[\frac{1}{2}\left(c_{i}+a_{i}\right) \cdot e_{d}\right]^{2}\right) \\
& =\frac{1}{24} \hat{n}_{i} \cdot e_{d}\left(\left[\left(a_{i}+b_{i}\right) \cdot e_{d}\right]^{2}+\left[\left(b_{i}+c_{i}\right) \cdot e_{d}\right]^{2}+\left[\left(c_{i}+a_{i}\right) \cdot e_{d}\right]^{2}\right)
\end{aligned}
$$

where we have observed that the integrand is a quadratic function on A_{i}, so that the standard midpoint sampling quadrature formula for triangles yields the integral exactly, see e.g. [1].

References

[1] A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Inc., Englewood Cliffs, N. J., 1971.

