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Abstract -- Here we present a new algorithm that could be 
employed to procedurally generate a range of gaming assets 
including 2 dimensional textures, 2.5 dimensional texture, and 
3 dimensional geometry. The approach involves placing 
shapes randomly, without overlap and with a monotonically 
decreasing area, within a region on a plane (2 dimensional 
texture) or within a volume (3 dimensional). If the process is 
continued to infinity then the result is space filling thus 
providing a variable and infinite degree of visual detail. It will 
be proposed/illustrated that the process is independent of the 
actual shape being used and as such can find a wide range of 
potential applications. 
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I. INTRODUCTION 

 The algorithmic (procedural) generation of assets, texture 
and geometry, within virtual worlds and gaming environments 
is well established. Well known examples include various 
noise based techniques [1], terrain generation [2], clouds [3], 
and plants [4]. These examples and others often involve fractal 
processes, not only because many natural phenomena can be 
represented by fractals, but fractal processes allow the game 
engine to create geometric detail on demand and when or 
where required, for example, creating texture only in front of 
the player in a first person view. This ability to create variable 
levels of detail ensures distant objects or objects out of view 
can represented at a lower geometric detail. The detail 
generated can be increased as the viewer gets closer and can 
appreciate the higher resolution.  

 As an introduction to the algorithm we will present how it 
may be used to create textures, both image based and 2.5 
dimensional surface roughness. There are some desirable 
properties such a procedural generator of textures should 
possess; the main ones are listed here 

• The ability to create the texture at variable levels of 
detail. For example, distant objects do not need as 
resolved textures as close objects. 

• The texture detail can increase smoothly as it is 
inspected more closely. Absence of this results in so 
called “popping” in algorithms where the additional 
detail is introduced at discrete distances and thus 
appears as an abrupt visual effect. 

• Textures need to be able to tile the plane seamlessly. 
This allows a small texture unit to be used to cover a 
large region. 

 

Figure 1. a) Appolonian packing. b) Sierpinski gasket. 

 The process outlined here provides a new answer to the 
question of how one might fill a bounded region with an 
infinite number of identical (this will be relaxed later) shapes 
so as to eventually fill the region, that is, fill in all the gaps [5]. 
Existing solutions include Apollonian [6,7] packing where 
shapes are iteratively introduced at random locations, they 
grow and perhaps move until they touch one or more existing 
shapes. Other solutions are recursive fractals such as the 
Sierpinski gasket [8] in which triangles fill the plane. 



 The solution outlined here sees shapes with a particular 
size added iteratively at a random location. If the shape does 
not overlap with any existing shape then it is placed 
permanently at that position otherwise a new random position 
is tried. The shape does not grow to fill the available gaps, and 
thus in general the shapes to not touch, rather the algorithm 
determines the size of each shape in advance. The question 
then is “what is the monotonically decreasing function that 
determines the size of the added shape at the current 
iteration”. Clearly, if the size decreases too quickly then space 
filling will not be achieved. If the size decreases too slowly 
then the process will run out of space, there will be no gap 
large enough to add the next shape such that it doesn’t overlap 
with the existing shapes. 

II. ALGORITHM 

 If A!  is the area of the first shape and g i  is the area 
scaling of the shape on each iteration i then the series of areas 
is simply 

A!,A!  g 1 ,A!  g 2 ,… ,A!  g n ,… (1) 

 The total area A is given by the sum of the above terms, 
namely 

A = A!      g(i)
!

!!!

 (2) 

 Therefore one is seeking a series g(i) that is monotonically 
decreasing and sums to a constant, namely the area to be filled. 
If g(i) decreases too fast then space filling is not achieved, if it 
doesn’t decrease fast enough the procedure fails due to 
insufficient space for the next shape, see figure 2. While the 
discussion here concentrates on space filling, low values of 
g(i) can be used as models for the distribution of water lilies 
on a pond or soap bubbles, see middle image in figure 2. 

 A series that satisfies the requirement and the one used 
here is as follows 

g i =   
1
i!

 (3) 

where c is some constant. This series is recognised as the 
Riemann Zeta function [9] which is known to converge for c > 
1. For space filling one can choose a value of c, the sum of the 
series is used to determine the value of A! given the area A to 
be filled. Alternatively A!  can be chosen which in turn 
determines the value of c. 

 The algorithm is as follows. Decide upon the bounded 
region to be filled and calculate the area A. Choose a value of 
c and based upon that and the sum of g(i) calculate the area of 
the first shape A!. On each iteration choose a random position 
from a uniform distribution for the current shape of area 
A!  g i . If the shape positioned at this candidate position does 
not result in any overlap with current shapes then place the 
shape at this position, otherwise keep trying other randomly 
selected positions until successful placement can be made. 

 

Figure 2. a) g i  decreases too fast [2000 circles], b) g(i) decreases 
too slowly [no space after 200 circles], c) g(i) decreases as presented 
to achieve space filling [5000 circles]. 



 There are four requirements for an implementation that 
creates these space fillings: 

1. Function that calculates the area of the shape given 
the parameters that define the shape. 

2. Function that calculates the parameters of the shape 
given the area. This is essentially the inverse of the 
function in requirement (1). 

3. Function that performs an intersection test between a 
shape and the boundary of the region being filled. 
This is used to determine whether the shape lies 
within the boundary and is also used to decide on 
issues of tiling. 

4. Function that performs an intersection test between 
two shapes. This is performed on each proposed 
placement to ensure the shape to be added does 
intersect any existing shape, this is the 
computationally critical comparison since it is 
applied between the shape to be added at the current 
iteration and every existing shape.  

III. PROPERTIES 

 The value of c controls the fractal dimension. For an 
embedding in dimension D (1,2,3) the fractal dimension d is 
given by 

 d = D / c (4) 

 Not any value of c may be chosen, in each dimension there 
is an upper limit and the limit depends on the shape being 
packed. For example in two dimensions (D=2) and for spheres 
the maximum value of c is 1.5.  

 If c and Ao are chosen as proposed then it is the authors 
claim that the process does not halt, that is, it does indeed 
allow an infinite space filling packing. 

 When used to create textures that tile seamlessly within a 
rectangular bounded region of width w and height h, the 
algorithm is modified such that when a placement is checked 
and made it is also performed at +-w and +-h. Figure 3 
illustrates examples of tileable textures, bounded by a square 
but with toroidal boundary conditions. By comparison the 
examples in figure 2 were bounded within a square. 

 The derivation says nothing about the shape itself, only the 
area. As such the algorithm will work for any shape and 
indeed even for mixtures of shapes so long as the decreasing 
function of area on each iteration, g(i), is honoured. While this 
property is difficult to prove, it feels intuitively correct and the 
authors have not identified any shapes that cause the algorithm 
to fail . This includes highly convex shapes (upper example in 
figure 3) and shapes with holes (lower example in figure 3). 

 The placement of shapes is random in nature, as such the 
same random number seed will ensure the same sequence of 
shapes thus preserving level of detail continuity. 

 

Figure 3. Examples of different shapes and toroidal boundary 
conditions Upper) Convex shapes. Middle) Randomly orientated 
pyramids. Lower) Shapes with holes.  



 Any irregularly bounded region can be textured, figure 5 
shows an example of a toroidal region textured with smaller 
spheres. This capability only requires an intersection test 
between the shape being tiled and the boundary shape. 

 A minor modification to control the size of the first shape 
(and all subsequent shapes) is to modify the function of g(i) to 

g i =   
1

(i + N)!
 (5) 

 Where N can be any positive real number but is usually an 
integer. 

IV. OTHER DIMENSIONS 

 In the middle and lower example in figure 3 while there is 
a three dimensional nature to the shapes it is only the cross 
sectional area through the image plane that is used for the 
packing. This can be employed in the generation of random 
cityscapes [11] for example but the three dimensional nature is 
simply an extension (extrusion) into three dimensions and not 
a true three dimensional packing. 

 The method is however readily extended into other 
dimensions. In one dimension it transforms into packing line 
segments into a length L, see figure 4 for the case of a straight 
line but it could equally be some other curve. The function g(i) 
now defines how the length of each line segment is reduced on 
each iteration, so similar to equation 2. 

L = L!      g(i)
!

!!!

 (6) 

 In three dimensions g(i) governs how the volume of each 
shape reduces on each iteration. Figure 5 presents an example 
of tori filling a sphere but the algorithm can find application in 
the creation of three dimensional textures within a rectangular 
bounded volume. As discussed previously in two dimensions 
one may choose to fill a bounded volume or employ periodic 
tiling. 

V. Conclusion 

 We have introduced a new algorithm with many of the 
features that are desirable when creating procedural multi-
resolution two dimensional textures as well as three 
dimensional geometries. The procedural and iterative 
properties of this algorithm make it ideal for creating textures 
and geometry at sufficient detail to meet frame rate dictated 
performance constraints within a gaming engine dependent on 
the players distance and viewing direction. The algorithm 
allows for texture generation over a range of fractal 
dimensions and readily supports the ability to create tileable 
textures within rectangular regions. 

 

 

 

Figure 4. Example in one dimension. Presented as two 
representations, a sphere of diameter equal to the length of the line 
segment (left) and tubes (right). 



ACKNOWLEDGEMENT 

 The algorithm presented has been inspired by John Shier 
[5] who conducted the pioneering research under the title of 
“statistical geometry”. The work was supported by iVEC 
through the use of advanced computing resources located at 
the University of Western Australia. 

 

Figure 5. Example of non-rectangular bounded regions. 

 

 

Figure 6. Example in 3 dimensions, tori filling a spherical region. 
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