
Space Filling: A new algorithm for procedural
creation of game assets

Paul Bourke
iVEC@UWA, The University of Western Australia, 35

Stirling Hwy, Crawley, Perth, West Australia 6009.
Email: paul.bourke@uwa.edu.au

John Shier
Normandale Community College, Bloomington,

Minnesota 55431, USA.

Abstract -- Here we present a new algorithm that could be
employed to procedurally generate a range of gaming assets
including 2 dimensional textures, 2.5 dimensional texture, and
3 dimensional geometry. The approach involves placing
shapes randomly, without overlap and with a monotonically
decreasing area, within a region on a plane (2 dimensional
texture) or within a volume (3 dimensional). If the process is
continued to infinity then the result is space filling thus
providing a variable and infinite degree of visual detail. It will
be proposed/illustrated that the process is independent of the
actual shape being used and as such can find a wide range of
potential applications.

Keywords -- procedural, texture, tiling, packing, space filling.

I. INTRODUCTION

 The algorithmic (procedural) generation of assets, texture
and geometry, within virtual worlds and gaming environments
is well established. Well known examples include various
noise based techniques [1], terrain generation [2], clouds [3],
and plants [4]. These examples and others often involve fractal
processes, not only because many natural phenomena can be
represented by fractals, but fractal processes allow the game
engine to create geometric detail on demand and when or
where required, for example, creating texture only in front of
the player in a first person view. This ability to create variable
levels of detail ensures distant objects or objects out of view
can represented at a lower geometric detail. The detail
generated can be increased as the viewer gets closer and can
appreciate the higher resolution.

 As an introduction to the algorithm we will present how it
may be used to create textures, both image based and 2.5
dimensional surface roughness. There are some desirable
properties such a procedural generator of textures should
possess; the main ones are listed here

• The ability to create the texture at variable levels of
detail. For example, distant objects do not need as
resolved textures as close objects.

• The texture detail can increase smoothly as it is
inspected more closely. Absence of this results in so
called “popping” in algorithms where the additional
detail is introduced at discrete distances and thus
appears as an abrupt visual effect.

• Textures need to be able to tile the plane seamlessly.
This allows a small texture unit to be used to cover a
large region.

Figure 1. a) Appolonian packing. b) Sierpinski gasket.

 The process outlined here provides a new answer to the
question of how one might fill a bounded region with an
infinite number of identical (this will be relaxed later) shapes
so as to eventually fill the region, that is, fill in all the gaps [5].
Existing solutions include Apollonian [6,7] packing where
shapes are iteratively introduced at random locations, they
grow and perhaps move until they touch one or more existing
shapes. Other solutions are recursive fractals such as the
Sierpinski gasket [8] in which triangles fill the plane.

 The solution outlined here sees shapes with a particular
size added iteratively at a random location. If the shape does
not overlap with any existing shape then it is placed
permanently at that position otherwise a new random position
is tried. The shape does not grow to fill the available gaps, and
thus in general the shapes to not touch, rather the algorithm
determines the size of each shape in advance. The question
then is “what is the monotonically decreasing function that
determines the size of the added shape at the current
iteration”. Clearly, if the size decreases too quickly then space
filling will not be achieved. If the size decreases too slowly
then the process will run out of space, there will be no gap
large enough to add the next shape such that it doesn’t overlap
with the existing shapes.

II. ALGORITHM

 If A! is the area of the first shape and g i is the area
scaling of the shape on each iteration i then the series of areas
is simply

A!,A! g 1 ,A! g 2 ,… ,A! g n ,… (1)

 The total area A is given by the sum of the above terms,
namely

A = A! g(i)
!

!!!

 (2)

 Therefore one is seeking a series g(i) that is monotonically
decreasing and sums to a constant, namely the area to be filled.
If g(i) decreases too fast then space filling is not achieved, if it
doesn’t decrease fast enough the procedure fails due to
insufficient space for the next shape, see figure 2. While the
discussion here concentrates on space filling, low values of
g(i) can be used as models for the distribution of water lilies
on a pond or soap bubbles, see middle image in figure 2.

 A series that satisfies the requirement and the one used
here is as follows

g i =
1
i!

 (3)

where c is some constant. This series is recognised as the
Riemann Zeta function [9] which is known to converge for c >
1. For space filling one can choose a value of c, the sum of the
series is used to determine the value of A! given the area A to
be filled. Alternatively A! can be chosen which in turn
determines the value of c.

 The algorithm is as follows. Decide upon the bounded
region to be filled and calculate the area A. Choose a value of
c and based upon that and the sum of g(i) calculate the area of
the first shape A!. On each iteration choose a random position
from a uniform distribution for the current shape of area
A! g i . If the shape positioned at this candidate position does
not result in any overlap with current shapes then place the
shape at this position, otherwise keep trying other randomly
selected positions until successful placement can be made.

Figure 2. a) g i decreases too fast [2000 circles], b) g(i) decreases
too slowly [no space after 200 circles], c) g(i) decreases as presented
to achieve space filling [5000 circles].

 There are four requirements for an implementation that
creates these space fillings:

1. Function that calculates the area of the shape given
the parameters that define the shape.

2. Function that calculates the parameters of the shape
given the area. This is essentially the inverse of the
function in requirement (1).

3. Function that performs an intersection test between a
shape and the boundary of the region being filled.
This is used to determine whether the shape lies
within the boundary and is also used to decide on
issues of tiling.

4. Function that performs an intersection test between
two shapes. This is performed on each proposed
placement to ensure the shape to be added does
intersect any existing shape, this is the
computationally critical comparison since it is
applied between the shape to be added at the current
iteration and every existing shape.

III. PROPERTIES

 The value of c controls the fractal dimension. For an
embedding in dimension D (1,2,3) the fractal dimension d is
given by

 d = D / c (4)

 Not any value of c may be chosen, in each dimension there
is an upper limit and the limit depends on the shape being
packed. For example in two dimensions (D=2) and for spheres
the maximum value of c is 1.5.

 If c and Ao are chosen as proposed then it is the authors
claim that the process does not halt, that is, it does indeed
allow an infinite space filling packing.

 When used to create textures that tile seamlessly within a
rectangular bounded region of width w and height h, the
algorithm is modified such that when a placement is checked
and made it is also performed at +-w and +-h. Figure 3
illustrates examples of tileable textures, bounded by a square
but with toroidal boundary conditions. By comparison the
examples in figure 2 were bounded within a square.

 The derivation says nothing about the shape itself, only the
area. As such the algorithm will work for any shape and
indeed even for mixtures of shapes so long as the decreasing
function of area on each iteration, g(i), is honoured. While this
property is difficult to prove, it feels intuitively correct and the
authors have not identified any shapes that cause the algorithm
to fail . This includes highly convex shapes (upper example in
figure 3) and shapes with holes (lower example in figure 3).

 The placement of shapes is random in nature, as such the
same random number seed will ensure the same sequence of
shapes thus preserving level of detail continuity.

Figure 3. Examples of different shapes and toroidal boundary
conditions Upper) Convex shapes. Middle) Randomly orientated
pyramids. Lower) Shapes with holes.

 Any irregularly bounded region can be textured, figure 5
shows an example of a toroidal region textured with smaller
spheres. This capability only requires an intersection test
between the shape being tiled and the boundary shape.

 A minor modification to control the size of the first shape
(and all subsequent shapes) is to modify the function of g(i) to

g i =
1

(i + N)!
 (5)

 Where N can be any positive real number but is usually an
integer.

IV. OTHER DIMENSIONS

 In the middle and lower example in figure 3 while there is
a three dimensional nature to the shapes it is only the cross
sectional area through the image plane that is used for the
packing. This can be employed in the generation of random
cityscapes [11] for example but the three dimensional nature is
simply an extension (extrusion) into three dimensions and not
a true three dimensional packing.

 The method is however readily extended into other
dimensions. In one dimension it transforms into packing line
segments into a length L, see figure 4 for the case of a straight
line but it could equally be some other curve. The function g(i)
now defines how the length of each line segment is reduced on
each iteration, so similar to equation 2.

L = L! g(i)
!

!!!

 (6)

 In three dimensions g(i) governs how the volume of each
shape reduces on each iteration. Figure 5 presents an example
of tori filling a sphere but the algorithm can find application in
the creation of three dimensional textures within a rectangular
bounded volume. As discussed previously in two dimensions
one may choose to fill a bounded volume or employ periodic
tiling.

V. Conclusion

 We have introduced a new algorithm with many of the
features that are desirable when creating procedural multi-
resolution two dimensional textures as well as three
dimensional geometries. The procedural and iterative
properties of this algorithm make it ideal for creating textures
and geometry at sufficient detail to meet frame rate dictated
performance constraints within a gaming engine dependent on
the players distance and viewing direction. The algorithm
allows for texture generation over a range of fractal
dimensions and readily supports the ability to create tileable
textures within rectangular regions.

Figure 4. Example in one dimension. Presented as two
representations, a sphere of diameter equal to the length of the line
segment (left) and tubes (right).

ACKNOWLEDGEMENT

 The algorithm presented has been inspired by John Shier
[5] who conducted the pioneering research under the title of
“statistical geometry”. The work was supported by iVEC
through the use of advanced computing resources located at
the University of Western Australia.

Figure 5. Example of non-rectangular bounded regions.

Figure 6. Example in 3 dimensions, tori filling a spherical region.

REFERENCES

[1] S. Green. nVidia Corporation. "Implementing Improved
Perlin Noise". GPU Gems 2, Chapter 26,

[2] J.P. Lewis. "Generalized Stochastic Subdivision", Vol 6, 3
(1987)

[3] G.Y. Gardner. "Visual Simulation of Clouds". SIGGRAPH
'85 Proceedings of the 12th annual conference on Computer
graphics and interactive techniques. pp 297-304.

[4] P. Prusinkiewicz, A. Lindenmayer. "The Algorithmic
Beauty of Plants". Springer-Verlag. (1990) pp 101–107. ISBN
978-0-387-97297-8.

[5] J Shier. "Filling Space with Random Fractal Non-
Overlapping Simple Shapes". Hyperseeing summer 2011 issue,
pp. 131-140, published by ISAMA (International Society of
the Arts, Mathematics, and Architecture).

[6] P.D. Bourke. "Appolony fractal". Computers and Graphics,
Vol 30, Issue 1, January 2006, pages 134-136.

[7] C.A. Pickover. "Cleopatra's Necklace and the Aesthetics of
Oscillatory Growth". The Visual Computer, Vol 9, No 3 pp
166-169.

[8] I. Stewart. "Four Encounters with Sierpinski's Gasket".
The Mathematical Intelligencer, 17, No. 1 (1995), 52-64.

[9] T.M. Apostol. "Zeta and Related Functions". NIST
Handbook of Mathematical Functions, Cambridge University
Press, ISBN 978-0521192255

[10] P.D. Bourke, J. Shier. The authors' web sites
 http://paulbourke.net/randomtile (PB)
 http://john-art.com (JS)

[11] S. Greuter, J. Parker, N. Stewart, G. Leach. "Real-time
procedural generation of `pseudo infinite' cities". GRAPHITE
'03 Proceedings of the 1st international conference on
Computer graphics and interactive techniques in Australasia
and South East Asia.

